
A Note on Proving Non-Regularity via Fooling Sets

Chandra Chekuri∗

University of Illinois at Urbana-Champaign

February 20, 2021

1 Introduction

This is a short note on the fooling set technique to prove that a given language L over a finite alphabet Σ
is not regular. There are generally three techniques for this.

• Pumping lemma

• Fooling sets (or equivalently the Myhill-Nerode theorem)

• Closure properties

Most courses in CS curricula confine attention to the pumping lemma, and touch upon the use of
closure properties (which is a reduction based approach). They generally do not teach the Myhill-Nerode
theorem due to its abstractness, and the limited time available. Sipser’s book on Theory of Computation
relegates Myhill-Nerode theorem to a starred problem (he included this only in the second edition after
feedback on his first edition). At University of Illinois, in the undergraduate course CS 374: Algorithms
and Models of Computing, we teach the fooling set technique for proving non-regularity, even though
we do not explicitly teach the Myhill-Nerode theorem. We refer the reader to notes on this topic by Jeff
Erickson and Mahesh Viswanathan and also Sariel Har-Peled and Madhu Parthasarathy.

The purpose of this note is to provide a small addendum to the fooling set approach to make it easier
for students to come up with a proof, without losing the advantages of the fooling set technique.

1.1 The Fooling Set Technique

For the sake of completeness we review the fooling set technique. We assume that the reader is already
familiar with DFAs and notions of regularity and related concepts. A reader familiar with fooling sets
can quickly refer to Lemma 1.5 and go directly to the next section.

Suppose L is a language over Σ, that is L ⊆ Σ∗. L is regular iff there is a DFA M such that L = L(M).
How do we prove that L is not regular? Every finite language is regular so necessarily L has to be infinite.
DFAs do not have memory beyond their states. The main intuition behind proving non-regularity of a
language L is that recognizing L requires memory that does not have a fixed finite bound. How do we
formalize this? We play a game which is essentially a proof by contradiction. Suppose L is regular. Then
there is a DFA M with some n states where n is finite. We then try to show that n states are not sufficient
to recognize L. If we succeed in proving this we have shown that there is no DFA for L with at most n
states. If the proof, like in induction, works for an arbitrary n then we have shown that there is no DFA
for L.

∗chekuri@illinois.edu. Comments and corrections are welcome.

1

How do we prove that a DFA with n states cannot recognize L. Let us try n = 1 as an exercise. A DFA
with one state consists of its start state and self loops for every a ∈ Σ. It either accepts all strings if the
start state is an accepting state, or accepts no strings if the start state is not an accepting state. Thus a 1
state DFA can only accept ; and Σ∗. Hence, if our given L is not one of these two simple languages we
are done. Let us try n = 2. We can do brute force and try all machines with 2 states and classify the
languages and check whether our L belongs to one of them. It is easy to see that this technique is not
scalable. Instead we will work out a more abstract idea that will help us generalize.

Suppose we have two strings x , y, x 6= y. What will a DFA M = (Q,Σ,δ, s, A) do when we given
them as input? The state that M will reach on x is δ∗M (s, x), and the state that M will reach on y is
δ∗M (s, y). The nature of a DFA is such that if δ∗(s, x) = δ∗(s, y) then the behaviour of M on xz and yz
for any string z is the same. That is if δ∗(s, x) = δ∗(s, y) then for all z ∈ Σ∗, δ∗(s, xz) = δ∗(s, yz). This
motivates the following definiton.

Definition 1.1. Given a language L over a finite alphabet Σ, two strings x , y ∈ Σ∗ are suffix distinguish-
able with respect to L if there is a string z ∈ Σ∗ such that exacly one of xz, yz is in L. We say that z is a
distinguishing suffix for x , y .

Note that the definition is about the language L and the strings x , y . It is not about DFAs.

Example 1. Let L = {0i | i mod 5= 0}. Then 0 and 000 are distinguishable by suffix 00; 000 6∈ L and
00000 ∈ L. The strings 0 and 000000 are not distinguishable with repect to L.

Exercise: Let L = {0i | i mod 5= 0}. Prove that for 0i , 0 j are distinguishable with respect to L if and
only if i − j mod 5 6= 0.

Example 2. Let L = {w ∈ {0,1}∗ | w ends in 01}. Strings 00 and 1 are distinguishable by 1.

Example 3. Let L = {0n1n | n≥ 0}. The strings 0i and 0 j are distinguishable for any i 6= j.

We will prove a seemingly silly lemma.

Lemma 1.2. If L has a distinguishable strings x , y then no DFA M with one state can recognize L.

Proof: Suppose M has only one state. Then δ∗(s, x) = δ∗(s, y) since they both have to be equal to s.
But this means that M can no longer tell apart x and y . But since they are a distinguisable pair there is
a z such that exactly one of xz and yz is in L but we have δ∗(s, xz) = δ∗(s, yz) which implies that M
will accept both or reject both but this means M does not correctly recognize L. �

In fact a more general statement is the following whose proof is very similar to the one above.

Lemma 1.3. If L has a distinguishable strings x , y and M = (Q,Σ,δ, s, A) is any DFA that recognizes L
then δ∗(s, x) 6= δ∗(s, y).

How do we leverage the preceding observation? The key definition is that of a fooling set.

Definition 1.4. Let L be a language. A set of strings F is a fooling set for L if every pair of distinct
strings in F is distinguishable with respect to L.

The definition of a fooling set may seem innocuous but the condition is strong. Every pair of strings in F
must be distinguishable. Note that each pair in F can be distinguished by a different suffix.

2

Exercise: Let L = {0i | i mod 5= 0}. Prove that {ε, 0, 00,000, 0000} is a fooling set for L.

Exercise: Let L = {0i | i mod 5= 0}. Prove that F is a fooling set for L if and only if the following is
true: for any x , y ∈ F , |x | − |y| 6= 0 mod 5.

Exercise: Let L = {w ∈ {0,1}∗ | w ends in 01}. Prove that {ε, 0, 01} is a fooling set for L.

The following is not hard to prove from Example 3.

Exercise: Let L = {0n1n | n≥ 0}. Prove that the infinite set F = 0∗ is a fooling set for L.

The key lemma is the following.

Lemma 1.5. Let L be a language and let F be a fooling set for L. No DFA M can recognize L if it has
less than |F | states. In particular, if |F | is infinite then L cannot be regular.

Proof: The proof is a simple extension of the basic lemma we saw earlier and is by contradiction. First
we prove the case when |F | is finite. Let F = {w1, w1, . . . , wn}. Let M = (Q,Σ,δ, s, A) be any DFA with
less than n states, that is |Q|< n. For i = 1 to k let qi = δ∗(s, wi) be the state that M reaches on input
wi . Since |Q|< n there must be two distinct strings wi , w j ∈ F with i < j and qi = q j; this follows from
the pigeon hole principle. In other words the machine M will be in the same state after seeing wi and
w j . However wi and w j are distinguishable with respect to L which means that there is a suffix z such
that exactly one of wiz, w jz is in L; however, M will take both wiz and w jz to the same state and hence
will accept both or reject both, thus making a mistake. Hence F fooled M and M could not be a correct
DFA for L.

Now consider the case that F is infinite. Suppose L is regular. This implies that there is some n such
that L has a DFA with n states where n is finite. Since F is infinite we can pick a subset F ′ ⊂ F such that
|F ′|= n+ 1. Note that any subset of a fooling set for L is also a fooling set for L, hence F ′ is a fooling
set of size n+ 1 for L. By the argument in the preceding paragraph M will make a mistake on L since
n< |F ′|. This contradicts the assumption that L had a DFA with n states. �

From the preceding lemma we see that if L has a fooling set of size n then it establishes a lower
bound of n on the number of states in any DFA that can recognize L. In particular if F is infinite then L
is not regular.

Exercise: Let L = {w ∈ {0,1}∗ | w ends in 01}. Since {ε, 0, 01} is a fooling set for L any DFA that
recognizes L must have at least 3 states. Prove that there is a DFA with 3 states.

Claim 1. The language L = {0n1n | n≥ 0} is not regular since 0∗ is an infinite fooling set for L.

A very natural question one can ask is the following. If L is not regular can we always find an infinite
fooling set? In other words, does this method always work to prove non-regularity. Indeed this is true
and captured by the Myhill-Nerode theorem.

Theorem 1.6 (Myhill-Nerode). Let L be any language. Then

• If L is not regular then there is an infinite fooling set for L.

• If L is regular then there is a fooling set F of size k where k is the smallest number of states of a
DFA that accepts L.

3

1.2 Coming up with Fooling Sets

How does one come with fooling sets for a given language L? We are here primarily concerned with the
task of proving that a language is not regular by coming up with an infinite fooling set. Coming up with
an infinite fooling set is often non-obvious. We make a simple but useful observation on fooling sets that
is often helpful in getting started.

Lemma 1.7. Suppose F is a fooling set for L. Every string in F except for one must be a prefix of some
string in L. In particular, if L is non-regular there is an infinite fooling set consisting of only prefixes of
strings in L.

In other words, when thinking of infinite fooling sets for a language L, it suffices to confine attention to
prefixes of strings in L.

Proof: Suppose x , y ∈ F, x 6= y where both x and y are both not prefixes of strings in L. We claim that
x , y are not distinguishable. Distinguishable means that there is a string z such that exactly one of xz, yz
is in L. But if xz is in L then x is a prefix of a string in L and similar if yz ∈ L, y is a prefix. �

The purpose of this note is to provide a slightly simpler way to find fooling sets via the following
lemma.

Lemma 1.8. A language L is non-regular if and only if for every n≥ 1 there a is a fooling set Fn for L
where |Fn|> n.

Proof: We sketch the proof since it easily follows from what we have seen so far. If L is not regular then
by the Myhill-Nerode theorem there is an infinite fooling set F . This easily implies that we can construct
a fooling set Fn of size n+ 1 by taking a subset of F .

For the converse we refer to Lemma 1.5. �

What advantage does this formulation give? The reason why this seemingly simpler formulation has
some advantage is that it lets one explore more systematically how to find a fooling set of size > n by
considering some fixed n; the finitary aspect of this is useful in our opinion. Moreover it reminds the
prover explicitly about the reasoning behind the proof: a language is non-regular iff we can find larger
and larger fooling sets.

We illustrate with some examples.
Consider the canonical non-regular language L = {0k1k | k ≥ 0}. Fix some n. We claim that

Fn = {ε = 00, 0, 00, . . . , 0n} is a fooling set of size n+ 1 for L. Note that we just need to come up with a
finite fooling set since n is finite. We can easily see in this case that Fn ⊂ Fn′ if n< n′ and that F = 0∗ is
an infinite fooling set for L. The point is that it is not necessary to actually figure out F to prove that L is
non-regular. Once we create Fn for each n such that |Fn|> n we are done.

Now we consider a more involved example. Consider L = {0k2
| k ≥ 0}. Why is this non-regular?

Coming up with an infinite fooling set for L may be difficult right away. However, let us start the process
by fixing n and asking how we can find a fooling set of size > n. A natural starting point is to start with
the set Fn = {ε, 0, 00, . . . , 0n} which has size n+ 1 since the strings are all prefixes of strings in L. But
then we need to prove that any pair of strings in Fn are distinguishable with respect to L. How do we
prove this? We need to show that if 0≤ i < j ≤ n then there is some string 0h such that exactly one of
i + h, j + h is a square of an integer. This seems non-obvious. It is not hard to see that if we take small
values of i, j we can do this by trial and error but question is how do we can prove it for all pairs. How do
we find an easier fooling set of sufficiently large size? A heuristic approach is the following. If we believe

4

that L is non-regular it is because it is infinite and longer strings would require more memory. Here,
having the concrete parameter n is useful. We should try looking for strings whose length is somehow a
function of n and we also want more than n strings. Given the language L it is worth looking at strings
longer than 0n2

. We note that 0n2
∈ L and the next string is 0(n+1)2 . Thus we have a large gap between

the length of two consecutive strings in L, more precisely, it is (n+ 1)2 − n= 2n+ 1. The DFA M with
≤ n states should not accept any string with length strictly between n2 and (n+ 1)2 but has to accept
0n2

and 0(n+1)2 . It is plausible to believe that it may have some difficulty counting to 2n+ 1 with only n
states. Based on this intuition we can try the following as a fooling set: Fn = {0n2

, 0n2+1, . . . , 0(n+1)2−1}.
You should verify that indeed Fn is a fooling set for L and moreover |Fn| ≥ 2n.

What is an infinite fooling set for L? It turns out that L is itself a fooling set for L. One can indeed
verify this. But verifying is not the same as coming up with it. Note that the fooling set we came up
for each n is quite different from L itself. This illustrates that the two different approaches can lead to
different ways of thinking which is always a good thing in mathematics.

Exercise: Prove that L = {02k
| k ≥ 0} is not regular.

One can show that L is a fooling set of L in the preceding exercise but it is not so obvious or intuitive.
However, using the same reasoning as the one for the language {0k2

| k ≥ 0} find a fooling set Fn for L
with |Fn|> n for each n> 0.

Exercise: Prove that L = {0bk
p

kc | k ≥ 0} is not regular.

Exercise: Prove that L = {0bk log kc | k ≥ 1} is not regular.

In fact we can prove a general lemma which simultaneously shows that many counting languages
are not regular.

Lemma 1.9. Let L = {0 f (k) | k ≥ 0} for some non-negative integer valued increasing function f : Z+→
Z+ such that for any n> 0 there is some h such that f (h+ 1)− f (h)> n. Then L is not regular.

Proof: For any n let h be an integer such that f (h+1)− f (h)> n. Consider the set Fn = {0 f (h), 0 f (h)+1, . . . , 0 f (h+1)−1}.
It is easy to verify that Fn is a fooling set since f is increasing. �

An interesting corollary is the following. Let PRIMES = {0p | p is a prime}. We claim that PRIMES =
{0p | p is a prime} is not regular. What the preceding proof technique suggests is the following. Given
any integer n can we find two consecutive primes p1 and p2 such that p2− p1 > n? Indeed this is true via
the following construction. Consider n!+ 1. Let p1 be the largest prime that is less than equal to n!+ 1
and p2 be the smallest prime that is > n!+ 1. Note that by our definition, p1 and p2 are consecutive
primes. We claim that each of the numbers n!+ 2, n!+ 3, . . . , n!+ n is a composite number since n!+ i is
divisible by i. Thus, p1 ≤ n!+ 1 and p2 > n!+ n and this implies that p2 − p1 ≥ n.

Distilling the thought process: Here we attempt to distill the process of finding a fooling set of
increasing size. Given language L and an integer n we are seeking to find a fooling set Fn for L such
that |Fn| ≥ n. First we try to find one distinguishing pair x , y ∈ L such that both x , y are long strings.
By long we are trying to find strings whose length depends on n somehow. Why? Because we need
to eventually find n strings in Fn, the strings have to be necessarily long, so we may as well start with
trying to find two long strings first. This process also gives us some feel for why the language may not be
regular and what kind of information a machine may need to keep track of to correctly recognize L. In
fact it may be helpful to think of a regular C program that can recognize L. Once we find two strings
that are distinguishable we explore the possibility of finding more strings that are related to those two
strings in some simple way. Here we keep in mind Lemma 1.7 which shows that we should find prefixes
of strings in the language.

5

1.3 Pumping Lemma

Here we briefly describe the pumping lemma technique, mainly to contrast it with the fooling set
technique and to see why it is sometimes simpler.

The high level approach is to prove that given L there is no DFA for L with n states for any n.
Instead of trying to find a general fooling set F with |F |> n the technique is based on cleverly finding a
sufficiently long string r where |r| ≥ n. Why? If |r| ≥ n, since M has only n states it will have a “cycle”
while processing r. More formally, let r = a1a2 . . . ah where h≥ n. Let qi = δ∗(s, a1a2 . . . ai) be the state
that M reaches after seeing the prefix of r with the first i characters (including i = 0 which corresponds
to ε). Then qi = q j for some 0≤ i < j ≤ n since M has only n states and we have n+ 1 prefixes (pigeon
hole principle). In other words the DFA goes from qi to qi (a cycle) when given the string v. It is then
easy to observe that DFA M will go from qi to qi on any number of copies of v (it will cycle around). That
is δ∗(qi , v`) = qi for any `≥ 0. This also implies that M behaves the same way on all strings of the form
uv` y for `≥ 0. Note that |v| ≥ 1, otherwise it is not interesting at all. The name pumping comes from
the fact that v can be pumped as many times as we want. We can write r = uvw where u = a1a2 . . . ai−1
and v = aiai+1 . . . a j and w is rest of the string (w can be ε). Note that |v| ≥ 1 which means that it is
non-trivial and also |uv| ≤ n. We can capture the preceding observation in the following lemma.

Lemma 1.10. Suppose L has a DFA M with n states. Let r be any string such that r ≥ |n|. Then r can
be written as uvw for some u, v, w such that (i) |v| ≥ 1 (ii) |uv| ≤ n and (iii) for any `≥ 0 the strings r
and uv`w are not distinguishable.

An important note is that the split of r into uvw is not under “our” control.
How can we exploit the above lemma to prove non-regularity of a given language L? We pick a clever

string r. Suppose we can prove that for some `, that we get to choose, the strings x = uvw and y = uv`w
have the property that exactly one of them is in L. But the lemma says that they are not distinguishable!
Then we obtained the desired contradiction that L has a DFA with at most n states. Proving that exactly
one of the string x = r and y = uv`w is in L is the same as saying that they are distinguishable via the
suffix ε. In fact it is sufficient to ensure that x , y are distinguishable by some suffix but that would be an
added level of complexity so the basic technique insists on the simpler condition.

Let us illustrate this with a couple of examples before we formalize the technique.
Consider L = {0k1k | k ≥ 0}. Given n we have to first choose a string r such that |r|> n. Let us try

r = 0n+11n+1. Then if some M with ≤ n states accepts L we can write r = uvw with |v| ≥ 1 and |uv| ≤ n.
Since |uv| ≤ n and r = 0n+11n+1 we must have |uv| = 0p for some p ≤ n. Now consider uv`w. What
is it? If we set `= 0 we have y = uv0w. We note that r ∈ L while y 6∈ L since y is obtained from r by
removing some |v| zeroes from r which means that in the resulting string the numbers of 0’s and 1’s are
different. Thus, y 6∈ L. In fact it is easy to see that x = r ∈ L and y = uv`w 6∈ L for any ` 6= 0. Since the
proof works for any n, this proves that L is not regular. Remember that we did not have any choice on
what p is because the pumping lemma only guarantees that r can be written as uvw for some uv with
|v| ≥ 1 and |uv| ≤ n. However our proof showed that any such v will work to get a contradiction.

A second example. Consider L = {0k2
| k ≥ 0}. What should we choose r for a given n? We will

choose r = 0n2
. In general we want to choose a string that is long compared to n and this is a natural

and reasonable choice. We have r = uvw for some |v| ≥ 1 and |uv| ≤ n. Let us look at y = uv2w. We
have y = 0n2

0p where p = |v|. We have 1≤ p ≤ n. We observe that n2 + p > n2 and n2 + p < (n+ 1)2

since (n+1)2− n2 = 2n+1> p. This means that y 6∈ L. Thus x = r ∈ L and y 6∈ L giving us the desired
contradiction.

We now formalize the pumping lemma technique for proving non-regularity of a given language L.

• Choose cleverly a string rn for an arbitrary integer n such that |rn| ≥ n.

6

• Assume that rn can be written as uvw where |v| ≥ 1 and |uv| ≤ n. Note that the split is not under
our control so we can only use the properties about length of v and uv.

• Show that one can choose some ` 6= 1 such that rn and the string uv`w are distinguishable with
respect to L thus obtaining a contradiction to the pumping lemma. Typically we choose rn ∈ L and
find some ` 6= 1 such that uv`w 6∈ L.

The cleverness in using the pumping lemma comes from picking the string rn for a given n and then
choosing ` appropriately in the third step to prove the contradiction. It is problem specific.

Pumping lemma technique has the advantage of focusing on finding a single clever string from the
language L. When it works, which happens for many interesting examples, it is a fairly simple technique.
The disadvantage of the pumping lemma is that it doesn’t always work to prove non-regularity while
the fooling set technique is fool-proof (sic) via the Myhill-Nerode theorem. Anoter disadvantage of
the pumping lemma technique is that students often find the lemma and the quantifiers confusing and
misunderstand it. However, there is no universal agreement on whether one should teach the pumping
lemma over the fooling set technique. Ideally we should teach both but time is short and most courses
stick to one or the other.

Exercise: Prove that the languages {02k
| k ≥ 0} is not regular.

Exercise: Prove Lemma 1.9 using the pumping lemma.

7

	Introduction
	The Fooling Set Technique
	Coming up with Fooling Sets
	Pumping Lemma

