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1 Introduction

These notes are intended to provide a quick refresher on basics of probability before introduction to the
use of randomization in algorithms. Probabilistic analysis tends to be non-trivial even in simple settings.
Various tools have been developed over the years and it is helpful to see some simple templates. For the
most part we will work with discrete (in fact finite) probability spaces but we will need also some tools
from continuous spaces. There are several subtleties involved in formal aspects of probability theory
when dealing with continuous spaces. These will not be of concern to us but it is useful to know why
one needs more involved definitions.

1.1 Discrete Probability Space and Events

We will start with simple finite probability spaces. Consider the experiment of tossing an unbiased coin
which turns up heads with probability 1/2 and tails with probability 1/2. Or tossing a 6-sided die where
each side is equally likely (with probability 1/6). To formally understand probability we need to define a
probability space. In the finite setting it consists of two pieces of information. A set of possible atomic or
elementary events Q and for each w € Q the probability that w is realized.

Definition 1.1. A finite probability space is a pair (2, Pr) consists of finite set Q2 of elementary events and
function Pr : Q — [0, 1] which assigns a probability Pr[w] for each w € Q such that ). o Prlw] =1.

Example 1. An unbiased coin. Q ={H,T} and Pr[H] =Pr[T]=1/2.
Example 2. A biased coin. Q ={H,T} and PrfH]=1/4 and Pr[T] = 3/4.
Example 3. A 6-sided unbiased die. 2 ={1,2,3,4,5,6} andPr[i]=1/6 for1 <i <6.
From simple probability spaces one often creates more complex ones by the product construction.

Definition 1.2. Suppose (Q;,Pr;) and (Q,,Pr,) are two finite probability spaces. Then the product
probability space (2, Pr) is defined as follows. Q = Q; x Q, and Pr(w, w4) = Pr;(w;) Pry(w,) for all
w1 S Ql,él)z S Qz.

The reader unfamiliar with product constructions should verify that the product space is indeed a
probability space. Thatis, Y, .o Prlw]=1.

One can easily extend the above product definition to the product of a finite number of spaces. Things
get tricky if one wants infinite products but we will not need it.
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Example 4. Two unbiased coins. One can view this as a single probability space (2, Pr) where Q =
{HH,HT,TH, T T} where the probability of each event is 1/4 or view this as the product of two spaces
where each space is that of one unbiased coin. The product view is often useful when considering
independence. On the other hand when correlations are present it is useful to view it as a single space.

Most things from finite probability spaces extend to a probability space over a countably infinite set.
Recall that a set A is countably infinite if there is a bijection from A to the natural numbers. Examples
include the set of even numbers, the set of primes, set of all strings over a finite alphabet.

Example 5. Let A > 0 be a fixed real number. Consider the space (2, Pr) where Q = {0,1,2,...,} is the
set of non-negative integers and Pr(i) = e‘l’}—; for each i > 0. This is the Poisson distribution with mean
A. We see that ., Pr(i) = 1 since et = >0 71“—,

Question 1. Suppose ( is the set of positive integers. We want to have a probability space where
Pr(i) = c/i? for each i > 1 where c is a fixed constant. Is it possible? What about if we wanted have a
probability space where Pr(i) = c/i for eachi?

Events: In most probability spaces what we are really after are interesting events.

Definition 1.3. Given a probability space (2, Pr) an event is a subset of Q). In other words an event is a
collection of elementary events. The probability of an event A, denoted by Pr[A], is D, ., Pr[w]. The
complement event of an event A C Q is the event Q \ A frequently denoted by A.

Example 6. A pair of independent dice. 2 ={(i,j) |1 <i<6,1<j<6}. Let A be the event that the
sum of the two numbers on the dice is even. ThenA= {(i,j) € Q: (i +j) is even}. Pr[A] = |A|/36 =1/2.

Question 2. Consider the probability space corresponding to the Poisson distribution with mean A. Let
A be the event that the outcome is an even number. What is Pr[A]?

The following question illustrates that one can easily define events over relatively simple probability
spaces but whose probability may not be easy to compute.

Question 3. Let (£, Pr) be the probability space corresponding to the product of the probability spaces
of 100 unbiased coins. Let A be the event that the number of heads is a prime number. What is Pr[A]?

Algebra over events: Given two events A, B we can define their union as the event AU B and their
intersection as AN B. We can easily prove the following in the setting of finite probability spaces via basic
set theory.

Pr[A] +Pr[B] =Pr[AUB]+ Pr[ANB]

which can be written alternatively as
Pr[AUB] =Pr[A] +Pr[B]—Pr[ANB].
What about the union of 3 events A, B, C? You can convince yourself via Venn diagram that
PrlAUBUC]=Pr[A]+Pr[B]+Pr[C] —Pr[ANB]—Pr[BNC]—Pr[ANC]+Pr[ANBNC].
A powerful generalization is the inclusion-exclusion formula for the union of a finite collection of

events A,,A,, ..., A,.

n
Pr{U A ]=DPr{al- > PfAnAl+ D PAnANA]+. .+ ()" PN A].
i=1

1<i<j<n 1<i<j<k<n
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Probability space vs distribution: We often talk about probability distributions. What is the distinction
between a probability space and a distribution? Distributions should be thought of as templates for an
actual concrete experiment. We say X;,X5, ..., X, are distributed according to say Poisson distribution
with mean A. What this means is that we instantiate the probability space for each X; using the values
that we copy from the distribution. This is to avoid the task of specifying in gory detail the probability
space for standard cases.

1.2 Continuous Probability Spaces

Consider the experiment of picking a uniformly random number from the continuous interval [0, 1]. It is
natural to view the underlying probability space Q as [0, 1] where the elementary events are the real
numbers in the interval [0, 1]. How should we define Pr over this space? Since Q2 is uncountably infinite
we cannot associate any non-zero value to Pr[x] for any x € [0, 1]; thus we need to set Pr[x] = 0. On
the other hand we intuitively see that the probability that a number picked uniformly from [0, 1] lies
in the interval [a, b] with b > a should be its length b —a. How do we reconcile this with setting the
probability of each atomic event in [a, b] to 0? One can see that it is not feasible to define probability
measures over continuous spaces by defining the values over elementary events and then assigning the
values to events. Hence a more general attempt is to define the probability measure over all events
simultaneously as long as they satisfy certain basic and intuitive axioms. For the interval [0, 1] we would
like Pr[A] for any event/subset A C [0, 1] to correspond to its “length” which is intuitive for interval
events.

So an attempt would be define Pr(A) for all A C Q2 and the natural axioms would be the following:
() Pr[Q2] =1 (ii) for each event A, Pr[A] = 1—Pr[A] (iii) for any countably infinite set of disjoint events
Ai,A,, ..., we have Pr[Ul.CflAi] = Zzl Pr[A;]. The last property may appear strong since we ask for
countably infinite unions but this is needed in many applications of probability. It turns out that one
cannot create such a measure due to various technical reasons and paradoxes. To avoid these issues
standard measure theory takes the view that we do not need to assign a measure to all possible subsets
of Q but only some subsets &. We want % to have some basic closure properties as well as include
all interesting sets that we can intuitively think of. For example, in the setting of [0, 1] all intervals
and their complements and finite unions and intersections should be included. A set not in & is called
non-measurable. Formally we define the notion of a o-algebra.

Definition 1.4. Given a set Q a collection of subsets & C 2 () is a o -algbera if the following properties
hold:

e NeF
e A€ Z implies that A€ & (closure under complementation)

e IfA},A,,..., is a countably infinite sequence of sets such that each A; € F then UZA; € F
(closure under countable union)

Note that closure under complementation and countable union also implies closure under finite intersec-
tion. That is, if A}, A,,...,A, € Z then N]_A; € Z.

Remark 1.5. For a finite or a countably infinite probability space we let & = 2 (Q2) and hence it is often
not explicitly mentioned.

With the discussion in place the formal definition of a probability space is as follows.



Definition 1.6. A probability space is a triple (Q0, & ,Pr) which consists of a set 2, a o-algebra & over
Q and a probability measure Pr : & — [0, 1] such that

e Pr{Q] =1
e ForAe Z,Pr{A]=1—Pr[A].

e For any countably infinite sequence of disjoint sets A{,As, ..., such thatA; € & for alli > 1,
Pl‘[UiAi] = Zlojl Pl‘[Al]

Density functions: Almost all of the time we don’t deal with the above subtleties since we typically
define continuous probability measures via density functions and cumulative distribution functions. In
other words we define probability measure indirectly via integration. Consider €2 = [0, 1]. We specify
a density function f : [0,1] — [0,1] we let Pr[A] = fA fdx. For instance if we want the uniform

distribution over [0, 1] we let f(x) = 1 and we see that Pr[[a, b]] = fab 1dx = b —a. In fact what this
formula hides is that it doesn’t tell us how to compute the standard Riemann integral for an arbitrary set
A C[0,1] but only over “nice” sets such as intervals and their finite unions and intersections. However,
for all practical purposes in this course and for most applications that most of us will encounter the
definition of probability measures via integration of “nice” functions over “nice” sets suffices.

Example 7. The standard Normal distribution over the entire real line (—oo, 00) is defined by the
2
density function f (x) = 1/%—,16_3( /2,

Question 4. Consider the density function f(x) = cx? over the set Q = [0,1] where ¢ is a fixed

constant. What should c be so that Pr[Q)] = 1? What is Pr[A] where A=[0.2,0.4]. What about when
A=1[0.1,0.2]U[0.3,0.6].

Remark 1.7. We will not mention the issue of the o-algebra & from now on even when discussing
continuous probability measures.

1.3 Union Bound

Union bound is a very simple bound but extremely useful because it does not make any assumptions.

Lemma 1.8. Let A, B be two events in a probability space (Q,Pr) then Pr[AU B] < Pr[A] + Pr[B]. More
generally let A;,A,...,A, be a finite collection of events then

n
Pr{UL A, ] < > Pr{A].
i=1

Proof: The discrete case is easy to prove. We consider the continuous case. AU B is the disjoint union of
A—B,ANB,B—A (if A,B are in the o-algebra then AUB, ANB, A—B, B—A are also in the o-algebra,
do you see why?). Hence,

Pr[AUB] =Pr[A—B]+Pr[ANB]+Pr[B —A]
<Pr[A—B]+Pr[ANB]+Pr[ANB] +Pr[B —A]
= Pr[A] + Pr[B].

We used the third axiom of probability on additivity over disjoint sets in the first and third equalities and
non-negativity of probability for the inequality in the second line. O

4



1.4 Independent Events

Independence is a fundamental notion in probability.

Definition 1.9. Let A,B be two events in a probability space. They are independent iff Prf[ANB] =
Pr[A]Pr[B], otherwise they are dependent.

Example 8. Two coins. Q= {HH,TT,HT, TH} and Pr[HH]=Pr[TT]=Pr[HT]=Pr[TH]=1/4.

* A is the event that the first coin is heads and B is the event that the second coin is tails. A,B are
independent.

e A is the event that both are not tails and B is the event that the second coin is heads. A, B are
dependent.

The formal definition of independence is often not very useful in understanding when two events
are independent since calculating the probabilities of various quantities is not straightforward. A more
intuitive definition is that A and B are independent if knowing whether one of them happened does not
tell us anything about whether the other happened or not. In complex settings, often the reason two
events A, B can be seen to be independent is because they are based on different parts of the probability
space. In fact, in most cases, we define or construct probability spaces via independence! Consider the
following example.

Example 9. Toss 100 independent unbiased coins. Let A be the event that in the first 5 coins there are at
least 2 heads and let B be the event that the number of tails in the last 10 coins is more than 7. Then
A, B are independent events.

Note that A, B are obviously independent because the coins are defined to be independent. What is
the probability space here? It is the product of the probability spaces of the individual coins. We can
formalize this in a lemma below.

Lemma 1.10. Let (2, Pr) be the product of k probability spaces (Q;,Pr;),...,(Q4,Pry). For S C [k] we
say that event A depends only on S if A= B x C where B = ]_[i¢5 Q; and C C l_[jes Q;. IfA is an event
that depends only on S C [k] and A’ is an event that depends onlyon T C [k] andSNT = { then A, A’
are independent.

Proof: Exercise. O

2 Random Variables

The most important concept that you need is the idea of a random variable. A random variable in a general
context is simply a mapping/function from a probability space (2, Pr) to another probability/measure
space . However, for the most part, we will be mainly interested in real-valued random variables and
indicator random variables.

Definition 2.1. Given a probability space (£2,Pr) a random variable X over ) is a function that maps
each elementary event to a real number. In other words X : Q — R.

An indicator (or binary) random variable is one whose range is {0, 1}, that is X(w) =0 or X(w) =1
for all w € Q.



Discrete versus continuous random variables: If the underlying probability space is discrete then
even when X is a real-valued random variable the range space is also effectively discrete although it is
embedded in a continuous space of real numbers. However when the original space (2 is continuous
then one has to be more careful in general. Not all functions mapping €2 to R work. There is a notion of
measurable functions that we will not discuss here. However, for calculations, we will need a density
function f for the probability distribution induced by X over the real numbers. Given a density function
f defining the probability distribution (£2, Pr) we can usually compute the density function fy associated
with the transformation X via calculus.

For real-valued random variables an important notion closely related to the density function is the
cumulative distribution function (cdf). Typically density is referred to by fyx and cumulative distribution
function as Fy. The function Fyx : R — [0,1] is defined as: Fx(t) = Pr[X < t]. One can see that
PriX <t]= f;o fx(y)dy. This also shows that fx = %FX.

Example 10. Consider the probability space (2, Pr) where Q = {1,2,...,6} corresponding to the out-
comes of a 6-sided die with uniform probability. Let X : Q@ — R where X(i) = i2. Then X is an

integer-valued random variable.

Example 11. Consider the probability space (2, Pr) where Q = {1,2,...,6} corresponding to the out-
comes of a 6-sided die with uniform probability. Let X : Q — {0,1} where X(i) =i mod 2. Then X is an
indicator random variable.

Example 12. Consider the probability space (0, Pr) where Q0 = [0, 1] and Pr is the uniform distribution.
Let X : Q — R where X(a) = exp(a). Then X is a real-valued random variable.

In the preceding example how do we compute the density function of X? Consider the uniform
probability distribution over [0, 1]. The density function f corresponding to this is f(x) = 1 for all
x €[0,1]. The random variable X maps [0, 1] to[1, e]. In this case we see that X is a one-to-one increasing
function. It is easier to work with the cumulative distribution functions F and Fy. We see that F(x) = x
for x € [0,1]. Since X is one-to-one we see that for any t € [1,e], Fx(t) =Pr[X < t]=F(Int) =1Int.
And hence fx(t) = %Fx(t) =1/t.

Why random variables? Random variables allow us to take specific views of a complex probability
space and analyze that particular view. Consider any «’ in the range of a random variable X : Q — Q.
Thus X collapses all atomic events in X~ !(w’) into ’. Thus, one can view X as partitioning the original
space 2 and associating with each part of this partition a symbol; hence X creates a new probability space
implicitly. In the real-valued case, by associating a number instead of a symbol, we gain the advantage of
calculating various quantities of interest. Moreover, as we will see, the judicious use of random variables
to calculate and estimate various quantities of interest is the key for analysis of probabilistic methods
and randomized algorithms.

Events and Indicator Random Variables: Recall that an event in a probability space is simply a subset
of atomic events in the discrete case (which will be our main focus) or belongs to the o-algebra in the
continuous case. With each event A we can associate an indicator random variable X, where X,(w) =1
if w € A and 0 otherwise. Why is this useful? It is useful because we have associated a number with
the event and now we can do manipulations with numbers when considering multiple events instead of
working with set algebra which can become quite complicated quickly. We will see several examples
soon. Conversely, each indicator random variable X : 2 — {0, 1} corresponds to an event Ay where
Ay = {w | X(w)=1}. Given a random variable X, what is Pr[X = b] for some b in the range of X? We
consider the event X~ 1(b) = {w € Q| X(w) = b} and Pr[X = b] = Pr[X_l(b)].



2.1 Independence of Random Variables

We saw the definition of independence of events. A more general notion is that of independence of
random variables.

Definition 2.2. Two discrete random variables X,Y defined over the same probability space (2, Pr) are
independent if for all a,b we have Pr[X =a,Y = b] = Pr[X = a]Pr[Y = b]. More generally X,Y are
independent if Pr[X € A,Y € B] = Pr[X € A]Pr[Y € B] for all measurable sets A, B.

As in the discussion of independence of events, the formal definition is less useful in knowing when
random variables are actually independent. Intuitively, two random variables are independent if knowing
the value of one does not tell us any information about the value of the other.

2.2 Expectation

Recall that the advantage of a real-valued random variable is that we can calculate with it. The most
basic information associated with a real-valued random variable is its expectation.

Definition 2.3. For a real-valued discrete random variable X over a probability space (0, Pr) the expec-
tation of X, denoted by E[X ], is defined as ), ., Pr[w]X(w). In other words, the expectation is the
average value of X according to the probabilities given by Pr[-].

Definition 2.4. For a real-valued random variable X over a continuous probability space (2, Pr) where
fx is the density function of X the expectation of X is defined as f oo Yfx(Y)dy L

Remark 2.5. Note that for infinite probability spaces the expectation of a random variable may not be
finite in which case we say it does not exist. Consider the random variable X where Pr[X =i] = c/i? for
all integersi > 1 where c = 6/n2. E[X] = D1 ¢/1 which diverges to co.

Remark 2.6. Often one works with functions of random variables which can be viewed as random
variables themselves but calculating the expectation of the resulting function can be done more directly
than computing the density function of the new random variable. Suppose X is a real-valued random
variable with density function X and we are interested in the function g(X) (say g is given by g(y) = y?).

Then E[g(X)] = [ g(3)fx(y)dy.
Expectation of an indicator random variable: A very useful fact is the following easy observation.

Lemma 2.7. For an event A let X, be the indicator random variable for A. Then E[X,] = Pr[A].

2.3 Linearity of Expectation and Examples
One of the most useful facts about expectation is the following simple one about linearity of expectation.

Lemma 2.8. Let X,Y be two real-valued random variables over the same probability space. Then
E[X +Y]=E[X]+E[Y]. More generally for any finite collection X,,Xo,...,X, of random variables over

the same probability space and real numbers ay,a,,...,a, we have E[Z?:l al-Xi] = Z?:l a; E[X;].

! Alternatively it is also the same as f f:o(l — Fx(y))dy where Fy is the cumulative distribution function of X. This can be
seen by integration by parts.



The preceding lemma easily follows from the definition of expectation.

We now give an example to illustrate the use of linearity of expectation. Let G = (V, E) be a graph with n
vertices and m edges. Let G’ be the graph resulting from independently deleting every vertex of G with
probability 1/2. What is the expected number of edges in G’? How do we analyze this? First we define
a random variable X to denote the number of edges in G’. What we want is E[X ]. The straightforward
formula for expectation is ZlkEzll kPr[X = k]. How do we calculate the quantity Pr[X = k] and how do
we do the sum? This seems quite hard. The key is to express X as a sum and then use linearity of
expectation. For each edge e € E let X, be an indicator random variable for whether e € G’. We see
that X = Y. c.cp X, and by linearity of expectation E[X ] = Ze€| E| E[X,.]. Since X, is an indicator random
variable we know that E[X,] =Pr[X, =1].

» Event A, = edge e € E is present in G'.
. Pr[Aez(u’v)] = Pr[u and v both are present] = Pr[u is present] - Pr[v is present] = % . % = %r. Here
we use independence in the experiment itself.

« E[X,]=Pr[A,].

E[X]= E[ZX{| =>Pr[A,] = %.

e€E e€E

Question 5. Let G = (V,E) be a graph with n vertices and m edges. Assume G has t triangles (i.e., a
triangle is a simple cycle with three vertices). Let G’ be the graph resulting from deleting independently
each vertex of G with probability 1/2. What is the expected number of triangles in G’?

Question 6. Suppose n balls are independently thrown into n bins where for each ball the bin is chosen
uniformly at random. (i) What is the probability that bin 1 is empty? (ii) What is the expected number
of empty bins?

2.4 Independence and product of expectations

Linearity of expectation works even when the variables are not independent. There are situations when
we need to work with products and here independence is useful.

Lemma 2.9. Let X,Y be independent random variables. Then E[XY ] = E[X]E[Y]. More generally for
any finite collection X,Xo,...,X, of independent random variables E[l_[iXi] =11 X:.

We give a proof for the discrete setting.

Proof:
E[X-Y]= > Prlw](X(w) Y(w))

wEeN

= Z PriX =xAY=y](x-y)
x,y€R

= Z Pr[X =x]-Pr[Y=y]-x-y
Xx,y€R

= (O Prix =x]x)(Q Pr[Y = y]y) =E[X]E[Y]
x€R YER



2.5 Variance and Higher Moments

Expectation of a random variable gives basic information about its behavior. Additional information
can be obtained via higher moments. For an integer t > 1 the t’th moment of X is defined as E[X t].
Expectation is the first moment. The second moment is closely related to the more standard measure,
namely the variance.

Definition 2.10. Let X be a real-valued random variable over a probability space such that E[X] is finite.
The variance of X, denoted by Var[X ], is E[(X — E[X])Z].

Prove the following claim which shows that Var[X ] differs from the second moment by an additive
term.

Claim 1. Var[X]=E[ (X —E[X])?*] = E[X?]— (E[X])*.

Note that Var[X ] may not be finite even when E[X] is finite. Can you think of an example? Note
that Var[X ] is a non-negative random variable and measures how far X deviates from its expectation.
Since Var[X ] is the square of the deviation we also use oy = /Var[X ], called the standard deviation, to
measure the deviation.

Example 13. Consider a random variable X where X = —B with probability 1/2 and X = B with
probability 1/2. E[X] = 0 for all values of B. On the other hand Var[X] = B? and ox = B.

Question 7. What is Var[aX ] for a scalar a as a function of a and Var[X ]?

Prove the following lemma.

Lemma 2.11. LetX,Y be independent random variables. Then Var[X +Y ] = Var[X]+ Var[Y]. More
generally if X{,X,,...,X, are independent random variables then Var[Z?:1 Xl-] = Z?:l Var[X;].

E|:X t] is the t’th moment of X. They are typically split into odd and even moments based on the
parity of t and the even moments are non-negative and hence tend to be more useful as measures of
deviation of X from its expectation. If E[X t] is small compared to E[X] for larger values of ¢t then it
indicates that X is very close to its expectation and well-behaved. This leads to concentration inequalities
that find many applications.

3 Conditional Probability and Expectation

Conditional probability allows us to focus on subsets of the probability space. Suppose we have a
probability space (£2, Pr) and we have information that event A happened but nothing else. If A= {w}
then there is no uncertainty left. However if A is a non-singleton set then we don’t know which elementary
event in A may have happened. How do we capture this? Since the discrete case is easier to understand
and essentially captures all the intuition we will stick to it. A natural way to do it is to define a new
probability space over the set A since only elementary events in A are feasible now. How should we assign
probabilities to each w € A? Let Pr’ be the probability function over A that we wish to compute. The
most natural choice is to set Pr'[w] = Pr[w]/Pr[A] for each w € A. This ensures that ). _,Pr'[w] =1,
and hence the new measure is indeed a probability measure over A. One can also think of Pr’ as a
probability measure over Q instead of over A; we set Pr'[w] = 0 for each w € A. Pr’ is the probability
measure conditioned on event A. Typically we write Pr’ as Pr[|A]. For an event B we say Pr[B | A] is
the probability of B conditioned on event A which is simply Pr'[B]. From our definition we have the
following easy consequence. Note that this is really coming from the definition.



Lemma 3.1. For any event B, Pr[B |A] =Pr'[BNA] = Pgﬁ?].

The above is often called Bayes’s theorem or rule; I prefer rule because it comes easily from a
definition rather than coming from a chain of non-trivial deductions. We note that Bayes’s rule is applied
in different ways depending on the context. In some applications we may have access to PrfANB] and
Pr[A] and want to compute Pr[B | A]. In others we may have access to Pr[B | A] and Pr[A] and want to
compute Pr[AN B] (for instance in observational studies).

Verify the claim below and see why it makes intuitive sense.
Corollary 3.2. A, B are independent events iff Pr[B | A] = Pr[B].

One can extend conditional probability to random variables in the natural way. Recall that a real-
valued random variable X over a probability space (2, Pr) is simply a function from €2 to R. As such X
does not explicitly depend on the probability measure. However E[X ]| does indeed depend on Pr. We
define E[X | A] as the conditional expectation of X given A. Its formal definition is simply the expectation
of X under the modified probability measure Pr’ = Pr[| A]. More formally, in the discrete case,

Pr{w]
Pr[A]

ELX [A]l= D Pr{w|AX(w)= ) |

weN wEA

X(w).

4 Some probability distributions of interest

We will encounter a small number of common distributions often and it is helpful to catalog them and
some of their known properties. Often these distributions are parametrized. You can find a lot of useful
information as well as pictures and examples on these distributions and much more on Wikipedia.

Bernoulli and Binomial distributions: Coin tosses are perhaps the simplest probability distribution
that are extremely well-studied for their simplicity and applicability. Given a number p € [0, 1] consider
the two variable space {H, T} with Pr[H] = p and Pr[T] =1 — p. This is called a Bernoulli distribution.
Often we want to toss n independent coins. Then the probability space is of size 2" corresponding to
{H,T}". It is often simpler to use {1,0} instead of {H, T} in which case the probability space is the
set of all binary strings of length n. The Binomial distribution with parameters n and p is obtained by
considering a random variable X where X (w) is equal to the number of heads (or 0’s) in the string «w. We
see that Pr[X = k] = (Z) p*(1 —p)" k. Thus the Binomial distribution can thus be alternatively thought
of as a distribution over {0,1,2,...,n} where Pr[i] = (Z)pk(l —p)k,

Suppose X has the Binomial distribution with parameters n, p. Then one way to understand X is
via a sum of n independent Bernoulli random variables Y;,Y5,...,Y, with parameter p. We then see
that E[X ] = E[Z?:l Yl] = np. We also have that Var[X] = >, Var[Y;] = np(1 — p). Note that a direct
computation with binomial coefficients would be much more messy.

Poisson distribution: The Poisson distribution has a single non-negative real parameter A > 0 and is
a discrete distribution over the non-negative integers {0,1,2,...,}. For a random variable X distributed
according to this distribution, Pr[X =i] = e‘lll.—;. One can prove that E[X] = Var[X] = A. Do you see
why? The Poisson distribution is very useful for a variety of reasons. It is connected to the Binomial
distribution as follows. It can be seen as the limit distribution of the Binomial distribution with parameters
n, p where we take n — 00 while reducing p such that np = A. Thus the Poisson distribution approximates
the Binomial distribution when p is very small compared to n; this allows one to avoid messy computations
with binomial coefficients and instead use the simpler formulas provided by the Poisson distribution.
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One very interesting property satisfied by the Poisson distribution is the following. If X;,X,,...,X,, are
independent Poisson random variables with means A, A,,..., A, then X = Z?:lXi has the Poisson
distribution with mean >, A;.

Geometric distribution: This distribution is closely related to the Bernoulli distribution and hence
has a single parameter p. There are two variants and both use the same name so one has to be careful.
The first variant is over the support {1,2,...} and the probability of i is the number of tosses of a
Bernoulli random variable to see the first head. If X is distributed according to this then we see that
Pr(X =i]=(1—p) " !p. E[X]=1/p and Var[X ] = (1 —p)/p>.

The second variant is to measure the number of failures before the first head. This is the same
as above shifted by —1 and hence has support {0, 1,2,...}. For this second variant the expectation is
(1/p —1) and variance is the same (1 —p)/p2.

Uniform distribution: The uniform distribution over a finite state space is pretty simple. If the state
space has size k then each elementary event has probability 1/k. This can be seen as a generalization of
the Bernoulli distribution. Suppose we have n such independent distributions. Their joint distribution
corresponds to the experiment of throwing n balls into k bins. Many aspects of balls and bins distributions
are studied and we will see examples and applications and connections to hashing.

Uniform distribution is very important in continuous probability spaces. The most familiar one is
to consider a uniform distribution over a closed interval [a, b] of the real line. The density function f
corresponding to this is f(x) = 1/(b —a) for x € [a, b] and 0 outside the interval. In general we can
define a uniform distribution over more complicated “shapes", especially in higher dimensions. Consider
the uniform distribution over the unit circle in the Euclidean plane. Or over a specified rectangle in the
plane. In such cases we have the density function f (x, y) is constant over the interior of the shape where
the constant depends on the normalization factor which is the area of the shape. Random variables can
be used to modify the uniform distribution appropriately to create more complex distributions.

Normal distribution: One of the most fundamental probability distributions is the Normal or Guassian
distribution. It is a distribution over the entire Euclidean space in any fixed dimension d. In one
dimension it is defined by two parameters, the mean y and the variance o2 (or standard deviation o).

The density function of this distribution is: f(x) = —L_=3(53") The standard Normal distribution is

oV2r

obtained by setting u = 0 and ¢ = 1 in which case it becomes the simpler expression ﬁe‘éxz. Itis a
distribution that is symmetric about the mean u. If X is a random variable distributed according to the
Normal distribution, by construction E[X] = u and Var[X ] = 0. The cumulative probability distribution
Fx(t) =Pr[X < t] is often needed but there is no closed-form expression for it.

Acknowledgments: We thank Manuel Torres for reading and corrections.
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